- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Pourahmadi, Mohsen (3)
-
Abokifa, Ahmed A. (1)
-
Aghashahi, Mohsen (1)
-
Ayala-Cabrera, D. (1)
-
Banks, M. Katherine (1)
-
Barker, Zachary A. (1)
-
Biswas, Pratim (1)
-
Brentan, B. M. (1)
-
Campbell, Bruce (1)
-
Campbell, Enrique (1)
-
Chandy, Sarin E. (1)
-
Eliades, Demetrios G. (1)
-
Galelli, Stefano (1)
-
Gatsis, Nikolaos (1)
-
Giacomoni, Marcio (1)
-
Haddad, Kelsey (1)
-
Herrera, M. (1)
-
Housh, Mashor (1)
-
Izquierdo, J. (1)
-
Kc, Bijay (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary Modern statistical methods for multivariate time series rely on the eigendecomposition of matrix-valued functions such as time-varying covariance and spectral density matrices. The curse of indeterminacy or misidentification of smooth eigenvector functions has not received much attention. We resolve this important problem and recover smooth trajectories by examining the distance between the eigenvectors of the same matrix-valued function evaluated at two consecutive points. We change the sign of the next eigenvector if its distance with the current one is larger than the square root of 2. In the case of distinct eigenvalues, this simple method delivers smooth eigenvectors. For coalescing eigenvalues, we match the corresponding eigenvectors and apply an additional signing around the coalescing points. We establish consistency and rates of convergence for the proposed smooth eigenvector estimators. Simulation results and applications to real data confirm that our approach is needed to obtain smooth eigenvectors.more » « less
-
Sundararajan, Raanju R.; Pipiras, Vladas; Pourahmadi, Mohsen (, Bernoulli)null (Ed.)
-
Taormina, Riccardo; Galelli, Stefano; Tippenhauer, Nils Ole; Salomons, Elad; Ostfeld, Avi; Eliades, Demetrios G.; Aghashahi, Mohsen; Sundararajan, Raanju; Pourahmadi, Mohsen; Banks, M. Katherine; et al (, Journal of Water Resources Planning and Management)
An official website of the United States government
